Analyze
Analysis and model explainability functions in PyCaret
plot_model
Example
# load dataset
from pycaret.datasets import get_data
diabetes = get_data('diabetes')
# init setup
from pycaret.classification import *
clf1 = setup(data = diabetes, target = 'Class variable')
# creating a model
lr = create_model('lr')
# plot model
plot_model(lr, plot = 'auc')
Change the scale

Save the plot

Customize the plot



Use train data

Plot on train data vs. hold-out data


Examples by module
Classification


















Regression







Clustering






Anomaly Detection


evaluate_model

interpret_model
Example

Save the plot
Change plot type
Correlation


Partial Dependence Plot


Morris Sensitivity Analysis

Permutation Feature Importance

Reason Plot


Use train data

dashboard
Dashboard Example



Video:
check_fairness
Check Fairness Example


Video:
get_leaderboard


assign_model
Clustering

Anomaly Detection

Last updated
Was this helpful?
