Others
Other functions in PyCaret
pull
Returns the last printed scoring grid. Use pull function after any training function to store the scoring grid in pandas.DataFrame.
Example
# loading dataset
from pycaret.datasets import get_data
data = get_data('diabetes')
# init setup
from pycaret.classification import *
clf1 = setup(data, target = 'Class variable')
# compare models
best_model = compare_models()
# get the scoring grid
results = pull()
models
Return a table containing all the models available in the imported module of the model library.
Example

If you want to see a little more information than this, you can pass internal=True.

get_config
This function retrieves the global variables created when initializing the setup function.
Example

To check all accessible parameters with get_config:
Variables accessible by get_config function:
'USI'
'X'
'X_test'
'X_test_transformed'
'X_train'
'X_train_transformed'
'X_transformed'
'data'
'dataset'
'dataset_transformed'
'exp_id'
'exp_name_log'
'fix_imbalance'
'fold_generator'
'fold_groups_param'
'fold_shuffle_param'
'gpu_n_jobs_param'
'gpu_param'
'html_param'
'idx'
'is_multiclass'
'log_plots_param'
'logging_param'
'memory'
'n_jobs_param'
'pipeline'
'seed'
'target_param'
'test'
'test_transformed'
'train'
'train_transformed'
'variable_and_property_keys'
'variables'
'y'
'y_test'
'y_test_transformed'
'y_train'
'y_train_transformed'
'y_transformed'
set_config
This function resets the global variables.
Example
get_metrics
Returns the table of all the available metrics in the metric container. All these metrics are used for cross-validation.

add_metric
Adds a custom metric to the metric container.

Now if you check metric container:

remove_metric
Removes a metric from the metric container.
No Output. Let's check the metric container again.

automl
This function returns the best model out of all trained models in the current setup based on the optimize parameter. Metrics evaluated can be accessed using the get_metrics function.
Example

get_logs
Returns a table of experiment logs. Only works when log_experiment = True when initializing the setup function.
Example

get_current_experiment
Obtain the current experiment object and return a class. This is useful when you are using a functional API and want to move to an OOP API.
set_current_experiment
Set the current experiment created using the OOP API to be used with the functional API.
Last updated
Was this helpful?