Others
Other functions in PyCaret
pull
Returns the last printed scoring grid. Use pull
function after any training function to store the scoring grid in pandas.DataFrame
.
Example
# loading dataset
from pycaret.datasets import get_data
data = get_data('diabetes')
# init setup
from pycaret.classification import *
clf1 = setup(data, target = 'Class variable')
# compare models
best_model = compare_models()
# get the scoring grid
results = pull()

type(results)
# >>> pandas.core.frame.DataFrame
models
Return a table containing all the models available in the imported module of the model library.
Example
# loading dataset
from pycaret.datasets import get_data
data = get_data('diabetes')
# init setup
from pycaret.classification import *
clf1 = setup(data, target = 'Class variable')
# check model library
models()

If you want to see a little more information than this, you can pass internal=True
.
# loading dataset
from pycaret.datasets import get_data
data = get_data('diabetes')
# init setup
from pycaret.classification import *
clf1 = setup(data, target = 'Class variable')
# check model library
models(internal = True)

get_config
This function retrieves the global variables created when initializing the setup function.
Example
# load dataset
from pycaret.datasets import get_data
data = get_data('diabetes')
# init setup
from pycaret.classification import *
clf1 = setup(data, target = 'Class variable')
# get X_train
get_config('X_train')

To check all accessible parameters with get_config
:
# check all available param
get_config()
Variables accessible by get_config
function:
'USI'
'X'
'X_test'
'X_test_transformed'
'X_train'
'X_train_transformed'
'X_transformed'
'data'
'dataset'
'dataset_transformed'
'exp_id'
'exp_name_log'
'fix_imbalance'
'fold_generator'
'fold_groups_param'
'fold_shuffle_param'
'gpu_n_jobs_param'
'gpu_param'
'html_param'
'idx'
'is_multiclass'
'log_plots_param'
'logging_param'
'memory'
'n_jobs_param'
'pipeline'
'seed'
'target_param'
'test'
'test_transformed'
'train'
'train_transformed'
'variable_and_property_keys'
'variables'
'y'
'y_test'
'y_test_transformed'
'y_train'
'y_train_transformed'
'y_transformed'
set_config
This function resets the global variables.
Example
# load dataset
from pycaret.datasets import get_data
data = get_data('diabetes')
# init setup
from pycaret.classification import *
clf1 = setup(data, target = 'Class variable', session_id = 123)
# reset environment seed
set_config('seed', 999)
get_metrics
Returns the table of all the available metrics in the metric container. All these metrics are used for cross-validation.
# load dataset
from pycaret.datasets import get_data
data = get_data('diabetes')
# init setup
from pycaret.classification import *
clf1 = setup(data, target = 'Class variable', session_id = 123)
# get metrics
get_metrics()

add_metric
Adds a custom metric to the metric container.
# load dataset
from pycaret.datasets import get_data
data = get_data('diabetes')
# init setup
from pycaret.classification import *
clf1 = setup(data, target = 'Class variable', session_id = 123)
# add metric
from sklearn.metrics import log_loss
add_metric('logloss', 'Log Loss', log_loss, greater_is_better = False)

Now if you check metric container:
get_metrics()

remove_metric
Removes a metric from the metric container.
# remove metric
remove_metric('logloss')
No Output. Let's check the metric container again.
get_metrics()

automl
This function returns the best model out of all trained models in the current setup based on the optimize
parameter. Metrics evaluated can be accessed using the get_metrics
function.
Example
# load dataset
from pycaret.datasets import get_data
data = get_data('diabetes')
# init setup
from pycaret.classification import *
clf1 = setup(data, target = 'Class variable')
# compare models
top5 = compare_models(n_select = 5)
# tune models
tuned_top5 = [tune_model(i) for i in top5]
# ensemble models
bagged_top5 = [ensemble_model(i) for i in tuned_top5]
# blend models
blender = blend_models(estimator_list = top5)
# stack models
stacker = stack_models(estimator_list = top5)
# automl
best = automl(optimize = 'Recall')
print(best)

get_logs
Returns a table of experiment logs. Only works when log_experiment = True
when initializing the setup function.
Example
# load dataset
from pycaret.datasets import get_data
data = get_data('diabetes')
# init setup
from pycaret.classification import *
clf1 = setup(data, target = 'Class variable', log_experiment = True, experiment_name = 'diabetes1')
# compare models
top5 = compare_models()
# check ML logs
get_logs()

get_current_experiment
Obtain the current experiment object and return a class. This is useful when you are using a functional API and want to move to an OOP API.
# loading dataset
from pycaret.datasets import get_data
data = get_data('insurance')
# init setup using functional API
from pycaret.regression import *
s = setup(data, target = 'charges', session_id = 123)
# compare models
best = compare_models()
# return OOP class for current functional experiment
reg1 = get_current_experiment()
set_current_experiment
Set the current experiment created using the OOP API to be used with the functional API.
# loading dataset
from pycaret.datasets import get_data
data = get_data('insurance')
# init setup using OOP API
from pycaret.regression import RegressionExperiment
reg1 = RegressionExperiment()
reg1.setup(data, target = 'charges', session_id = 123)
# compare models
best = compare_models()
# set OOP experiment as functional
set_current_experiment(reg1)
Last updated
Was this helpful?