Others

Other functions in PyCaret

pull

Returns the last printed scoring grid. Use pull function after any training function to store the scoring grid in pandas.DataFrame.

Example

# loading dataset
from pycaret.datasets import get_data
data = get_data('diabetes')

# init setup
from pycaret.classification import *
clf1 = setup(data, target = 'Class variable')

# compare models
best_model = compare_models()

# get the scoring grid
results = pull()
Output from pull()

models

Return a table containing all the models available in the imported module of the model library.

Example

Output from models()

If you want to see a little more information than this, you can pass internal=True.

Output from models(internal = True)

get_config

This function retrieves the global variables created when initializing the setup function.

Example

Output from get_config('X_train')

To check all accessible parameters with get_config:

Variables accessible by get_config function:

  • 'USI'

  • 'X'

  • 'X_test'

  • 'X_test_transformed'

  • 'X_train'

  • 'X_train_transformed'

  • 'X_transformed'

  • 'data'

  • 'dataset'

  • 'dataset_transformed'

  • 'exp_id'

  • 'exp_name_log'

  • 'fix_imbalance'

  • 'fold_generator'

  • 'fold_groups_param'

  • 'fold_shuffle_param'

  • 'gpu_n_jobs_param'

  • 'gpu_param'

  • 'html_param'

  • 'idx'

  • 'is_multiclass'

  • 'log_plots_param'

  • 'logging_param'

  • 'memory'

  • 'n_jobs_param'

  • 'pipeline'

  • 'seed'

  • 'target_param'

  • 'test'

  • 'test_transformed'

  • 'train'

  • 'train_transformed'

  • 'variable_and_property_keys'

  • 'variables'

  • 'y'

  • 'y_test'

  • 'y_test_transformed'

  • 'y_train'

  • 'y_train_transformed'

  • 'y_transformed'

set_config

This function resets the global variables.

Example

get_metrics

Returns the table of all the available metrics in the metric container. All these metrics are used for cross-validation.

Output from get_metrics()

add_metric

Adds a custom metric to the metric container.

Output from add_metric('logloss', 'Log Loss', log_loss, greater_is_better = False)

Now if you check metric container:

Output from get_metrics() (after adding log loss metric)

remove_metric

Removes a metric from the metric container.

No Output. Let's check the metric container again.

Output from get_metrics() (after removing log loss metric)

automl

This function returns the best model out of all trained models in the current setup based on the optimize parameter. Metrics evaluated can be accessed using the get_metrics function.

Example

Output from print(best)

get_logs

Returns a table of experiment logs. Only works when log_experiment = True when initializing the setup function.

Example

Output from get_logs()

get_current_experiment

Obtain the current experiment object and return a class. This is useful when you are using a functional API and want to move to an OOP API.

set_current_experiment

Set the current experiment created using the OOP API to be used with the functional API.

Last updated

Was this helpful?