Deploy
MLOps and deployment related functions in PyCaret
predict_model
Hold-out predictions
# load dataset
from pycaret.datasets import get_data
diabetes = get_data('diabetes')
# init setup
from pycaret.classification import *
clf1 = setup(data = diabetes, target = 'Class variable')
# create a model
xgboost = create_model('xgboost')
# predict on hold-out
predict_model(xgboost)
Unseen data predictions

Probability by class

Setting probability threshold

Comparison between different thresholds on the hold-out data

finalize_model

deploy_model

AWS
GCP
Azure
save_model

load_model

save_experiment
load_experiment

check_drift


convert_model

Video:
create_api


Video:
create_docker



Video:
create_app

Video:
Last updated
Was this helpful?